Charge-insensitive qubit design derived from the Cooper pair box

Pan Zhang ,EPFL

October 30, 2024

1 / 18

Introduction

Main Contents for this week

- Summary of Transmon qubits
 - ► Transmon and Effective circuit
 - Charge Dispersion
 - Anharmonicity
- circuit QED
 - System Hamiltonian in Jaynes-Cummings Hamiltonian
 - System Hamiltonian in dispersive limits

Transmon and Effective circuit

From Copper pair box to transmon qubit, the only modification is a shunting connection of the two superconductors via a large capacitance C_B

- Hamiltonian = $4E_c(\hat{n} n_g)^2 E_J cos(\hat{\varphi})$
- ullet \hat{n} is number of cooper piars transferred between the islands.
- ullet \hat{arphi} is the gauge invariant phase between the superconductors.

3 / 18

Transmon and Effective circuit: Transmon Energy levels

The eigenenergy of hamiltonian is given by solving the stationary Schrodinger equation in phase basis.

- $[4E_C(-i\frac{d}{d\omega})^2 E_J\cos(\varphi)\psi](\varphi) = E\psi(\varphi)$
- Using Ansatz solution we reduce the differential equation into $g''(x) + (\frac{E}{E_C} + \frac{E_j}{E_C} cos(2x))g(x) = 0$
- ullet We get the $E_m(n_g)=E_C a_{2[n_g+K(m,n_g)]}(-E_j/2E_c)$
- Here, $K(m, n_g)$ is a function that can correctly sorting the eigenvalues. It gives you positive or negative integer.

Transmon and Effective circuit: Transmon¹

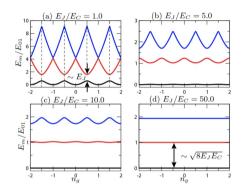


Figure:

$$E_m(n_g) = E_C a_{2[n_g + K(m,n_g)]}(-E_j/2E_c)$$

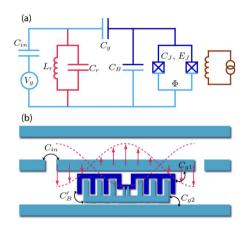


Figure: $4E_c(\hat{n} - n_g)^2 - E_I cos(\hat{\varphi})$

¹Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.

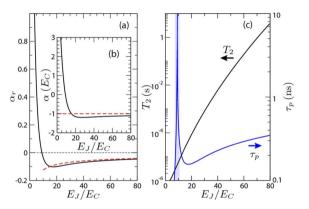
Charge dispersion

- For a 2 level system, we expect a stable energy level.
- At large E_I/E_c ratio, we saw from previous slides, a very stable energy level.
- We employ WKB approximation on energy level, get $E_m(n_g) \approx E_m(n_g = 1/4) ce^{-\sqrt{8E_J/E_C}}cos(2\pi n_g)$
- the exponential term heavily suppress the charge dispersion resulting in a stable energy gap.

Anharmonicity

- The energy level can be approximate as $E_m \approx -E_J + \sqrt{8E_cE_j}(m+1/2) \frac{E_c}{12}(6m^2 + 6m + 3)$
- ullet The energy eigenvalue is expanded the cosine(arphi) around the fourth order of around arphi=0.
- ullet and using the quantization relation express $arphi=(rac{2E_c}{E_i})^{1/4}(a^\dagger+a)$
- Find the asymptotic expression for relative anharmonicity is $\alpha_r = \alpha/E_{01} \approx -(8E_I/E_C)^{-1/2}$

Anharmonicity²



Absolute aharmonicity $\alpha=E_{12}-E_{01}$. relative aharmonicity $\alpha_r=\alpha/E_{01}$. $E_J/E_c\approx 9$ negative relative aharmonicity

²Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.

Circuit QED

Full analysis of Transmon circuit

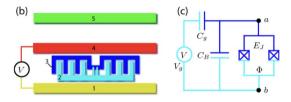
$$\begin{split} \hat{H} &= \frac{\hat{\phi}_{r}^{2}}{2L_{r}} + \frac{(C_{B} + C_{g})\hat{Q}_{r}^{2}}{2C_{*}^{2}} \\ &+ \frac{(C_{g} + C_{in} + C_{r})\hat{Q}_{J}^{2}}{2C_{*}^{2}} - E_{J}\cos\left(\frac{2\pi}{\hbar}\hat{\phi}_{J}\right) \\ &+ \frac{C_{g}\hat{Q}_{r}\hat{Q}_{J}}{C_{*}^{2}} + \frac{(C_{B}C_{in} + C_{g}C_{in})\hat{Q}_{r}V_{g} + C_{g}C_{in}\hat{Q}_{J}V_{g}}{C_{*}^{2}}. \end{split}$$

 $C_*^2 \approx C_B C_r + C_g C_r$ assuming C_r is much larger than other values. After substitution, we find:

$$\hat{H} = \frac{\hat{\phi}_r^2}{2L_r} + \frac{\hat{Q}^2}{2C_r} + \frac{\hat{Q}_J}{2(C_B + C_g)} - E_J \cos\left(\frac{2\pi}{\hbar}\hat{\phi}_J\right) + \frac{C_{in}\hat{Q}_r V_g}{C_r}$$
(1)

Circuit QED³

Full analysis of Transmon circuit



The general JC hamiltonian is optained: $\hat{H}=\hbar\sum_{j}\omega_{j}\left|j\right\rangle\left\langle j\right|+\hbar\omega_{r}\hat{a}^{\dagger}\hat{a}+\hbar\sum_{i,j}g_{ij}\left|i\right\rangle\left\langle j\right|\left(\hat{a}+\hat{a}^{\dagger}\right)$

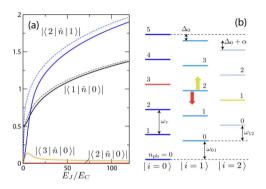
³ Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.

Circuit QED, Transmon in Jaynes-cummings Hamiltonian

- ullet Rewrite the system in uncoupled transmon states |i
 angle
- The Hamiltonian reach $\hat{H}=\hbar\sum_{j}\omega_{j}\left|j\right\rangle \left\langle j\right|+\hbar\omega_{r}\hat{a}\hat{a}+\hbar\sum_{i,j}g_{ij}\left|i\right\rangle \left\langle j\right|\left(\hat{a}+\hat{a}^{\dagger}\right)$
- ullet where $\hbar g_{ij}=2eta eV_{rms}^{0}\left\langle i
 ightert \hat{n}\leftert j
 ight
 angle$

11 / 18

Circuit QED, Transmon in Jaynes-cummings Hamiltonian⁴



All i+n where |n|>1 term can be effectively ignored in the large $\frac{E_I}{E_C}$ limit. Only consider the adjacent states in the large E_j/E_c limit, we find $\hat{H}=\hbar\sum_i\omega_i\left|j\right>\left< j\right|+\hbar\omega_r\hat{a}^\dagger\hat{a}+\hbar\sum_{i,i+1}g_{i,i+1}\left|i\right>\left< i+1\right|\hat{a}^\dagger+H.C.$

⁴ Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.

Circuit QED, Dispersive limit

In the dispersive limit, the detunnings $\Delta_i=\omega_{i,i+1}-\omega_r$ between transmon and cavity are large, where coupling strength of the cooper pair between uncoupled transmon state $|0\rangle$ and $|1\rangle$. g_{01} is much smaller than detunning defined above.

The consequence is canonical transformation gauge the cavity-qubit interaction to the lowest order.

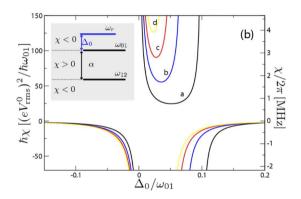
- Hamiltonian after canonical transformation: $\hat{H}_{eff} = \frac{\hbar \omega_{01}'}{2} \hat{\sigma}_z + (\hbar \omega_r' + \hbar \chi \hat{\sigma}_z) \hat{a} \dagger \hat{a}$ in dispersive limit.
- $\omega_r' = \omega_r \chi_{12}/2$
- $\omega'_{01} = \omega_{01} + \chi_{01}$
- Define: $\chi=\chi_{01}-\chi_{12}/2$, where $\chi_{ij}=rac{g_{ij}^2}{\omega_{ii}-\omega_r}$
- Directly compute χ , we find $\hbar\chi \approx -(\beta e V_{rms})^2 (\frac{E_J}{2E_C})^{1/2} \frac{E_C}{\hbar\Delta_0(\hbar\Delta_0 E_C)}$.

Circuit QED, Dispersive limit

$$\hbar \chi \approx -(\beta e V_{rms})^2 (\frac{E_J}{2E_C})^{1/2} \frac{E_C}{\hbar \Delta_0 (\hbar \Delta_0 - E_C)} = g^2 (\frac{1}{\Delta_0} - \frac{1}{\Delta_1}), \chi_{ij} = \frac{g_{ij}^2}{\omega_{ij} - \omega_r}, \chi = \chi_{01} - \chi_{12}/2$$
(2)

- Noting the negative sign at beginning of the equation. χ is only positive when $0 < \Delta_0 < E_c$.
- This don't violate the dispersive regime defined as $_{01}/\Delta_0 << 1$ or another word, dispersive regime depend on $(\frac{E_j}{E_c})^{1/4} << \omega_{01} \omega_r$.
- The strong coupling regime, in the other hand, require $g >> max(\gamma, \kappa)$

Circuit QED, Dispersive limit⁵



The plot of $\chi = \chi_{01} - \chi_{12}/2$. The pole is at $\Delta_0 = 0$ and $\Delta_0 = E_c$

⁵Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.

Conclusion, Transmon

• Energy level proportional to Mathieu characteristic a value.

$$E_m(n_g) = E_C a_{2[n_g + K(m,n_g)]} (-E_j/2E_c)$$

• Charge dispersion is suppressed exponentially

$$E_m(n_g) \approx E_m(n_g = 1/4) - ce^{-\sqrt{8E_J/E_C}}cos(2\pi n_g)$$

• Anharmonicty is decreased with weak power law. $\alpha_r = \alpha/E_{01} \approx -(8E_I/E_C)^{-1/2}$

Conclusion, Circuit QED⁶

- Circuit hamiltonian reaches Jaynes-Cummings model after employ rotating wave approximation. $\hat{H}=\hbar\sum_{j}\omega_{j}\left|j\right\rangle\left\langle j\right|+\hbar\omega_{r}\hat{a}^{\dagger}\hat{a}+\hbar\sum_{i,i+1}g_{i,i+1}\left|i\right\rangle\left\langle i+1\right|\hat{a}^{\dagger}$
- In dispersive limit, where $\frac{g_{01}}{\Delta_{01}} << 1$, the hamiltonian reduce to $\hat{H}_{eff} = \frac{\hbar \omega_{01}'}{2} \hat{\sigma}_z + (\hbar \omega_r' + \hbar \chi \hat{\sigma}_z) \hat{a} + \hat{a}$.
- The qubit frequency is tied with resonator frequency with effective dispersive shift $\chi_{ij} = \frac{g_{ij}^2}{\omega_{ii} \omega_r}$
- ullet The strong coupling regime is reached when coupling strength g>> maximum channel decay rate.
- We find the strong coupling can be achieved in dispersive regime gives opportunities of performing quantum nondemolition.

⁶Alexandre Blais et al. "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation". In: Physical Review A 69.6 (2004), p. 062320. DOI: 10.1103/PhysRevA.69.062320.

References I

- [1] Alexandre Blais et al. "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation". In: Physical Review A 69.6 (2004), p. 062320. DOI: 10.1103/PhysRevA.69.062320.
- [2] Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319.